www.nature.com/bjp

Compared pharmacology of human histamine H₃ and H₄ receptors: structure—activity relationships of histamine derivatives

^{1,2}Florence Gbahou, ^{1,2}Ludwig Vincent, ¹Marie Humbert-Claude, ¹Joel Tardivel-Lacombe, ¹Claude Chabret & *,¹Jean-Michel Arrang

¹INSERM, Unité de Neurobiologie et Pharmacologie Moléculaire (U573), Centre Paul Broca, 2 ter rue d'Alésia, 75014 Paris, France

- 1 Various histamine derivatives were investigated at the human H₃ receptor (H₃R) and H₄ receptor (H₄R) stably expressed in human embryonic kidney (HEK)-293 cells using [¹²⁵I]iodoproxyfan and [³H]histamine binding, respectively.
- 2 In Tris buffer, [3 H]histamine binding to membranes of HEK(hH₄R) cells was monophasic (K_D of 3.8 ± 0.8 nM). In phosphate buffer, the Hill coefficient was decreased ($n_H = 0.5\pm0.1$) and a large fraction of the binding was converted into a low-affinity component ($K_D = 67\pm27$ nM).
- 3 The inhibition of [${}^{3}H$]histamine binding by two agonists, a protean agonist and five antagonists/inverse agonists confirms that the potency of many $H_{3}R$ ligands is retained or only slightly reduced at the $H_{4}R$.
- 4 Histamine derivatives substituted with methyl groups in α , β or N^{α} position of the side chain retained a nanomolar potency at the H_3R , but their affinity was dramatically decreased at the H_4R . With relative potencies to histamine of 282 and 0.13% at the H_3R and H_4R , respectively, (\pm) - α , β -dimethylhistamine is a potent and selective H_3R agonist.
- 5 Chiral α -branched analogues exhibited a marked stereoselectivity at the H_3R and H_4R , the enantiomers with a configuration equivalent to L-histidine being preferred at both receptors.
- 6 The methylsubstitution of the imidazole ring was also studied. The relative potency to histamine of 4-methylhistamine (4-MeHA) at the H_4R (67%) was similar to that reported at H_2 receptors but, owing to its high affinity at the H_4R ($K_i = 7.0 \pm 1.2$ nM) and very low potency at H_1 and H_3 -receptors, it can be considered as a potent and selective H_4R agonist.
- 7 On inhibition of forskolin-induced cAMP formation, all the compounds tested, including 4-MeHA, behaved as full agonists at both receptors. However, the maximal inhibition achieved at the H_4R ($\sim -30\%$) was much lower than at the H_3R ($\sim -80\%$). Thioperamide behaved as an inverse agonist at both receptors and increased cAMP formation with the same maximal effect ($\sim +25\%$).
- 8 In conclusion, although the pharmacological profiles of the human H₃R and H₄R overlap, the structure–activity relationships of histamine derivatives at both receptors strongly differ and lead to the identification of selective compounds.

British Journal of Pharmacology (2006) **147**, 744–754. doi:10.1038/sj.bjp.0706666; published online 23 January 2006

Keywords:

Histamine; H_3 receptor; H_4 receptor; [125I]iodoproxyfan binding; [3H]histamine binding; cAMP formation; stereoselectivity; (\pm) - α , β -dimethylhistamine; 4-methylhistamine

Abbreviations:

EtHA, ethylhistamine; FSK, forskolin; HEK, human embryonic kidney; hH₃R, human H₃ receptor; hH₄R, human H₄ receptor; MAP kinase, mitogen-activated protein kinase; MeHA, methylhistamine

Introduction

The H₃ receptor (H₃R) was detected in the 1980s as an autoreceptor controlling histamine synthesis and release in the rat and human brain (Arrang *et al.*, 1983; 1987; 1988). The cDNAs encoding the H₃R from various species, including human (Lovenberg *et al.*, 1999) and rat (Lovenberg *et al.*, 2000; Morisset *et al.*, 2000; Drutel *et al.*, 2001), were cloned recently. Screening of human libraries and genome databases by various groups led to the cloning and preliminary characterization of a receptor closely related to the H₃R, the H₄ receptor (H₄R) (Nakamura *et al.*, 2000; Oda *et al.*, 2000;

Liu et al., 2001a; Morse et al., 2001; Nguyen et al., 2001; Zhu et al., 2001). The H₄R has about 40% sequence homogy to the H₃R (58% in transmembrane domains) and both receptors display similar genomic structures with two introns and three exons (Coge et al., 2001b; Tardivel-Lacombe et al., 2001). In addition, some reports suggest that the recombinant H₄R, like the H₃R (Lovenberg et al., 1999), couples to G_i/G_o proteins and inhibits forskolin-induced cAMP formation (Zhu et al., 2001). In contrast to these structural similarities, the expression patterns of both receptors strongly differ. Whereas the H₃R is predominantly localized in the brain, where it is present on many neuronal perikarya, dendrites and projections (Pillot et al., 2002), the H₄R is mainly expressed on hematopoietic cells (Oda et al., 2000; Liu et al., 2001a; Morse et al., 2001; Zhu

^{*}Author for correspondence; E-mail: arrang@broca.inserm.fr

²These authors contributed equally to this study.

et al., 2001). The presence of the H₄R on leukocytes and mast cells suggests that it plays an important role in immune responses and inflammation (Gantner et al., 2002; Buckland et al., 2003; Hofstra et al., 2003; Takeshita et al., 2003; Bell et al., 2004; Thurmond et al., 2004).

The pharmacological profiles of H₃Rs (Ligneau *et al.*, 2000; Lovenberg et al., 2000) and H₄Rs (Liu et al., 2001b) show strong species differences, but early studies indicated that they overlap, several H₃R agonists or antagonists having appreciable activity at the H₄R (Hough, 2001). Few selective H₄R ligands are yet available (de Esch et al., 2005). The first potent and selective H₄R antagonist is a non-imidazole derivative that was designed recently and used for the characterization of the recombinant and native H₄R (Ling et al., 2004; Thurmond et al., 2004). Among agonists, the atypical neuroleptic clozapine has been shown to fully activate the H₄R, although it displays a moderate (submicromolar) affinity (Oda et al., 2000; Liu et al., 2001a, b; Buckland et al., 2003). The two methylcyanoguanidine derivatives of imifuramine, OUP-13 and OUP-16, also act as full agonists at the human H₄ receptor (hH₄R), but display a higher potency with a 40-fold selectivity over the human H₃ receptor (hH₃R) (Hashimoto et al., 2003).

In the present study, the potencies of various chiral and nonchiral histamine derivatives were determined at the recombinant human H₄R on inhibition of [³H]histamine binding (in different experimental conditions). For comparison, and because most of these histamine derivatives had been previously studied only at the rat H₃ autoreceptor, their potencies have also been determined at the recombinant hH₃R on inhibition of [¹25]liodoproxyfan binding (Ligneau *et al.*, 1994). In addition, some selected compounds have been studied at the human H₃R and H₄R on inhibition of forskolin-induced cAMP formation.

Methods

Cloning of the hH_3R and hH_4R cDNAs

The hH₃R was cloned by screening of a human striatum cDNA library as described (Ligneau *et al.*, 2000). cDNAs corresponding to the full-length coding sequence of the human H₄ receptor (hH₄R) were cloned by PCR. Human bone marrow Marathon-Ready cDNAs (Clontech, Basingstoke, U.K.) were amplified for 40 cycles (94°C, 55°C and 72°C for 30 s each) using AmpliTaq Gold polymerase (Perkin-Elmer Life Sciences, Boston, MA, U.S.A.) and primers based on the N-terminal and C-terminal regions of the hH₄R sequence (forward primer: 5'-ATGCCAGATACTAATAGCACAATC AATTTATC-3' and reverse primer: 5'-TTAAGAAGATACT GACCGACTGTGTTGT-3'). PCR products were electrophoresed on a 1% agarose gel, subcloned and sequenced.

Stable transfection of human embryonic kidney (HEK)-293 cells

cDNAs corresponding to the full-length coding sequences of the hH₃R and hH₄R were ligated into the mammalian expression vector pCIneo (Promega, Charbonnières, France). HEK-293 cells were transfected using PolyFect (Qiagen, Courtaboeuf, France). Stable transfectants were selected with 2 mg ml⁻¹ of geneticin (G418, Invitrogen Gibco BRL, Cergy-

Pontoise, France) and tested for [125 I]iodoproxyfan binding (hH₃R) (Ligneau *et al.*, 1994) or for [3 H]histamine binding (hH₄R). Several clones named HEK(hH₃R) or HEK(hH₄R) were selected for further characterization and maintained in the presence of 0.2–1 mg ml⁻¹ of G418.

Binding assays

Binding assays on the hH₃R were performed as described previously (Ligneau *et al.*, 1994). Aliquots of membrane suspensions from HEK(hH₃R) cells ($10-20\,\mu\mathrm{g}$ of protein) were incubated for 60 min at 25°C with 25 pM [125 I]iodoproxy-fan alone or together with competing drugs in phosphate buffer (Na₂HPO₄/KH₂PO₄ 50 mM, pH 7.5) ($200\,\mu\mathrm{l}$ final volume). The nonspecific binding was determined using imetit ($1\,\mu\mathrm{M}$).

For binding assays on the hH₄R, HEK(hH₄R) cells were washed and homogenized with a Polytron in ice-cold Tris buffer (Tris-HCl 50 mM, pH 7.5). After centrifugation (12,000 × g for 30 min at 4°C), the pellet was suspended in 1 ml of the same ice-cold binding buffer. Aliquots of the membrane suspension (10–20 μ g of protein) were incubated for 60 min at 25°C with [³H]histamine alone or together with competing drugs (1 ml final volume). The nonspecific binding was determined using imetit (1 μ M). In some saturation studies, the membrane fraction and binding assay was performed in phosphate buffer (Na₂HPO₄/KH₂PO₄ 50 mM, pH 7.5).

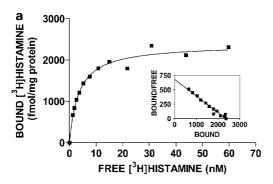
cAMP accumulation

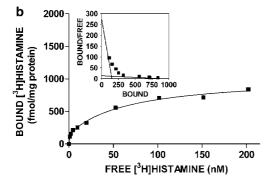
HEK(hH₃R) or HEK(hH₄R) cells were incubated for 10 min at 37°C with 1 μ M forskolin and, when required, 10 μ M of the various ligands. cAMP was extracted and measured by radioimmunoassay (Perkin-Elmer Life Sciences, Boston, MA, U.S.A.). Statistical evaluation of the results was performed by one-way ANOVA followed by Newman–Keuls test.

Analysis of data

The saturation and inhibition curves were analyzed with an iterative least-squares method derived from that of Parker & Waud (1971). Computer analysis was performed by nonlinear regression using a one-site cooperative model, except in some saturation experiments in which a significant improvement of the analysis was obtained by resolution of the data in two components with a two-site model. The method provided estimates for K_D and $B_{\rm max}$ values of [125 I]iodoproxyfan (hH₃R) and [3H]histamine (hH₄R) and for IC₅₀ values of competing drugs. K_i values of the latter were calculated from their IC₅₀ values assuming a competitive antagonism and by using the relationship $K_i = IC_{50}/(1 + S/K_D)$, where S represents the concentration of the radioligand (25 pM [125 I]iodoproxyfan or 2 nM [3H]histamine) and K_D its apparent dissociation constant (Cheng & Prussoff, 1973).

Radiochemicals and drugs


[125 I]Iodoproxyfan (2000 Ci mmol⁻¹) was prepared as described (Krause *et al.*, 1997). [3 H]Histamine (51 Ci mmol⁻¹) was from Amersham Pharmacia Biotech (Les Ulis, France). Thioperamide and ciproxifan were from Bioprojet (Paris, France). Clobenpropit was from Tocris (Bristol, U.K.). Proxyfan, FUB


349 (Ligneau *et al.*, 2000), FUB 465 (Morisset *et al.*, 2000), N^{α} -ethylhistamine, β -methylhistamine (β -MeHA), α,α -, α,β -and β,β -dimethylhistamine (α,α -diMeHA, α,β -diMeHA and β,β -diMeHA), (R)- and (S)- α -methylhistamine (α -MeHA), (R)- and (S)- α -chloromethylhistamine (α -ChloroMeHA) and (R)- and (S)- α -hydroxymethylhistamine (α -HydroxyMeHA) were provided by W. Schunack (Freie Universität Berlin, Germany). Imetit, N^{α} -MeHA, N^{α} -diMeHA, 2- and 4-MeHA were provided by C.R. Ganellin (University College, London, U.K.).

Results

Characterization of $\lceil {}^{3}H \rceil$ histamine binding to the $hH_{4}R$

[³H]histamine binding to membranes of HEK(hH₄R) cells in Tris-HCl buffer (50 mM, pH 7. 5) was saturable and analysis of the data using an one-site cooperative model indicated that the Hill coefficient was not significantly different from unity $(n_{\rm H}=0.9\pm0.1)$, with a $K_{\rm D}$ value of $3.8\pm0.8\,{\rm nM}$ and a $B_{\rm max}$ value of $2400\pm200\,{\rm fmol\,mg^{-1}}$ protein. Scatchard analysis of saturation binding data also disclosed a single population of sites with a $K_{\rm D}$ value of $3.5\pm0.4\,{\rm nM}$ (Figure 1a). In the presence of $100\,\mu{\rm M}$ GTPγS, no significant specific binding could be detected when the membranes were incubated in Tris-HCl buffer with 25 nM [³H]histamine (data not shown).

Figure 1 Saturation of [3 H]histamine binding to the recombinant hH₄R. Membranes of HEK(hH₄R) cells were incubated with [3 H]histamine in increasing concentrations for 60 min at 25°C in 50 mM Tris-HCl buffer, pH 7.5 (a) or 50 mM Na₂HPO₄/KH₂PO₄ buffer, pH 7.5 (b). Specific binding was defined as that inhibited by 1 μ M imetit. The insets show the Scatchard transformation of the data. The lines in (b) were drawn after analysis of the data by nonlinear regression using a least-square curve fitting procedure for a two-site model. Each point represents the mean of 4–8 determinations from two separate experiments.

When the experiments were performed with the same membrane samples in phosphate buffer (50 mm Na₂HPO₄/ KH₂PO₄, pH 7.5), analysis of the data using an one-site cooperative model indicated that the Hill coefficient was greatly decreased as compared with a Tris-HCl buffer ($n_{\rm H}$ = 0.5 ± 0.1). The $B_{\rm max}$ was also significantly decreased and the data fitted significantly better to a two-site model analysis. The Scatchard plot could also be resolved in a high-affinity population of sites $(K_D = 0.56 \pm 0.12 \text{ nM} \text{ and } B_{\text{max}} = 154 \pm 0.12 \text{ nM}$ 64 fmol mg⁻¹ protein, i.e., 15% of maximal specific binding) and a low-affinity population with K_D and B_{max} values of $67 \pm 27 \,\mathrm{nM}$ and $883 \pm 72 \,\mathrm{fmol \, mg^{-1}}$ protein, respectively (Figure 1b). When the membranes were incubated in phosphate buffer with 25 nm [3H]histamine in the presence of $100 \,\mu\text{M}$ GTP γ S, a partial but significant decrease of specific binding was observed $(-29\pm5\%)$, and this decrease corresponded to the density of the high affinity population of sites $(-144 \pm 28 \,\mathrm{fmol}\,\mathrm{mg}^{-1}\,\mathrm{protein})$ (data not shown).

Results from competition studies using Tris-HCl (50 mM, pH 7.5) buffer show that [³H]histamine binding to membranes of HEK(hH₄R) cells was inhibited in a concentrationdependent manner by a range of H₃-receptor ligands. All of the compounds inhibited the binding with Hill coefficients not significantly different from unity, although the coefficient found for thioperamide in the one-site model tended to be slightly lower ($n_{\rm H} = 0.82 \pm 0.03$). The deduced $K_{\rm i}$ values for each compound are given in Table 1. Unlabelled histamine inhibited the binding with a K_i value similar to its K_D value $(4.7\pm0.3 \text{ and } 3.8\pm0.8 \text{ nM}, \text{ respectively})$. The affinities of the compounds at the hH₄R were also compared to their affinities that we recently reported at the hH₃R (Ligneau et al., 2000). The agonist imetit and the protean agonist proxyfan (Gbahou et al., 2003) were about two- and 13-fold less potent at the H₄R, respectively. Among the H₃-receptor antagonists/inverse agonists, thioperamide displayed similar potencies at human H₄Rs and H₃Rs, whereas clobenpropit, FUB 349, FUB 465 and ciproxifan were about 2-13-fold less potent at the H₄R (Table 1).

Potencies of N^{α} -substituted histamine derivatives, and of 2- and 4-MeHA at the human H_3Rs and H_4Rs

The potencies of three N²-substituted histamine derivatives at the hH₃R were determined by the [125]jiodoproxyfan-binding assay (Ligneau *et al.*, 1994) on membranes of HEK(hH₃R)

Table 1 Compared potencies of H₃-receptor ligands at the human H₄ and H₃ receptors (H₄Rs and H₃Rs)

Agent	hH_4R	hH_3R	Selectivity (ratio)
Histamine Imetit Proxyfan Thioperamide Ciproxifan Clobenpropit FUB 465 FUB 349	4.7 ± 0.3 1.6 ± 0.1 34 ± 1 43 ± 3 612 ± 32 4.3 ± 0.2 704 ± 74 9.5 ± 0.2	$\begin{array}{c} 11 \pm 2 \\ 0.7 \pm 0.1 \\ 2.7 \pm 0.1 \\ 60 \pm 12 \\ 46 \pm 4 \\ 2.4 \pm 0.6 \\ 188 \pm 12 \\ 2.1 \pm 0.2 \end{array}$	H ₄ (2.3) H ₃ (2.3) H ₃ (13) H ₄ (1.4) H ₃ (13) H ₃ (1.8) H ₃ (3.7) H ₃ (4.5)

Values (*K*_i, nM) regarding the H₃ receptor are taken from Ligneau *et al.* (2000), except for imetit (Wulff *et al.*, 2002), histamine and FUB 465.

F. Gbahou et al

cells stably expressing the receptor. Specific [125 I]iodoproxyfan binding was monophasic and saturable, and analysis by nonlinear regression using a one-site cooperative model led to a K_D value of 82 ± 12 pM, in close agreement with the value that we previously reported on membranes of CHO(hH₃R) cells (50 ± 7 pM, Ligneau *et al.*, 2000). The inhibition curves for the agonists N^z -MeHA and N^x , N^z -dimethylhistamine (N^x , N^x -diMeHA), were found to be shallow, their pseudo-Hill

coefficients being close to 0.7 (Figure 2). A similar observation could be made for the inhibition curve of histamine ((Ligneau et al., 2000) and Figure 2). The apparent K_i values that were deduced from the mean IC₅₀ values are given in Table 2. The potencies of the agonists relative to histamine (= 100) calculated from these K_i values indicated that N^{α} -MeHA and N^{α} , N^{α} -diMeHA were about four- and two-fold more potent than histamine itself, respectively, whereas N^{α} -ethylhistamine

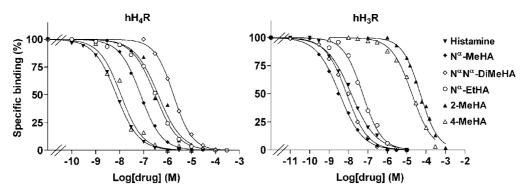


Figure 2 Effect of N^z -substituted histamine derivatives and of 2- and 4-MeHA on [125 I]iodoproxyfan binding to the hH₃R and on [3 H]histamine binding to the hH₄R. Membranes of HEK(hH₃R) cells were incubated with 25 pM [125 I]iodoproxyfan and drugs as described (Ligneau *et al.*, 1994). Membranes of HEK(hH₄R) cells were incubated in Tris-HCl buffer with 2 nM [3 H]histamine and drugs in increasing concentrations. Each point represents the results from two independent experiments with triplicate determinations.

Table 2 Compared potencies of N^z -substituted histamine derivatives and of 2- and 4-methylhistamine at the human H_4 and H_3 receptors (H_4Rs and H_3Rs)

Compounds	Structure	hH_4R	hH_3R	Selectivity (ratio)
Histamine	N NH ₂	4.7±0.3 (100)	11±2 (100)	H ₄ (2.3)
$N^{\!\scriptscriptstyle extsf{x}} ext{-methylhistamine}$	NHCH ₃	48±2 (9.8)	$2.7 \pm 0.3 \ (407)$	H ₃ (18)
N^{α} , N^{α} -dimethylhistamine	N CH ₃	$1178 \pm 70 \ (0.4)$	6.6±1.0 (167)	H ₃ (178)
$N^{\!\scriptscriptstyle lpha}$ -ethylhistamine	NHC ₂ H ₅	192±14 (2.4)	43±4 (26)	H ₃ (4.5)
2-methylhistamine	CH ₃ NH ₂	252±45 (1.9)	$42,020 \pm 3600 \ (0.03)$	H ₄ (167)
4-methylhistamine	N NH ₂	7.0 ± 1.2 (67)	$18,960 \pm 2140 \ (0.06)$	H ₄ (2709)

Values (K_i , nM) were derived from data shown in Figure 2. The relative potencies (indicated between brackets) were calculated as the ratio: (K_i value of histamine/ K_i value of compound) × 100. The relative potencies of 4-methylhistamine at H₁- and H₂-receptors were of 0.2 and 43%, respectively (Black *et al.*, 1972; Ganellin, 1982; Hill *et al.*, 1997).

(N^z -EtHA) was about four-fold less potent than histamine at the hH₃R (Table 2). Both 2-MeHA and 4-MeHA displayed a much lower affinity with K_i values in the micromolar range leading to potencies relative to histamine less than 0.1% (Table 2).

The potencies of the histamine derivatives were then determined at the hH₄R by the [³H]histamine-binding assay performed in 50 mm Tris-HCl buffer (pH 7.5) on membranes of HEK(hH₄R) cells. The three N^{α} -substituted compounds inhibited the binding with Hill coefficients not significantly different from unity and displayed a decreased potency relative to histamine at H₄Rs (Figure 2). N^α-MeHA was about 10-fold less potent than histamine. N^{α} -ethylhistamine was about fourfold less potent than its methyl analogue. N^{α}, N^{α} -diMeHA inhibited [³H]histamine binding with a very low (micromolar) affinity, leading to a potency relative to histamine of only 0.4% (Table 2). 2-MeHA was also much less potent than histamine with a relative potency of 1.9%. In contrast, 4-MeHA displayed a high affinity at the H₄R with a K_i value of $7.0 \pm 1.2 \,\mathrm{nM}$ leading to a potency relative of histamine of 67% (Table 2).

Potencies of non-chiral α - and/or β -methylated histamine derivatives at the human H_3Rs and H_4Rs

Substitution with methyl groups in α - and/or β -position of the side chain of the histamine molecule leads to compounds that displaced specific [125 I]iodoproxyfan binding to hH₃Rs ($n_{\rm H}=0.7$ –0.8) with a high affinity (Figure 3). (\pm)- β -MeHA and (\pm)- α , β -diMeHA displayed a nanomolar affinity and were two- to three-fold more potent than histamine. The affinities of α , α -diMeHA and β , β -diMeHA were lower, these two derivatives being about three- to four-fold less potent than histamine (Table 3).

These histamine derivatives displaced specific [3 H]histamine binding to hH₄Rs with a low affinity and with Hill coefficients not significantly different from unity (Figure 3). (\pm)- β -MeHA displayed a potency relative to histamine of 4.3% on membranes of HEK(hH₄R) cells. The affinity of the dimethyl analogues was even lower with K_{i} values in the micromolar range leading to potencies relative to histamine below 0.5% (Table 3).

Potencies of chiral histamine derivatives at the human H_3Rs and H_4Rs

[125] Ijiodoproxyfan binding to membranes of HEK(hH₃R) cells was inhibited in a concentration-dependent and stereoselective manner ($n_{\rm H} = 0.6 - 0.7$) by the enantiomeric pairs of three chiral α -branched histamine derivatives, that is, α -MeHA, α -Chloro-MeHA and α -HydroxyMeHA. As expected, the binding of the compounds was stereoselective and the enantiomer with the same spatial configuration as L-histidine, that is, (R)- α -MeHA, (S)- α -ChloroMeHA and (S)- α -HydroxyMeHA, was in each case preferred at hH₃Rs (Table 4). The potent agonist (R)-α-MeHA displaced specific binding with a nanomolar affinity similar to that previously reported in the same binding test (Ligneau et al., 2000; Coge et al., 2001a; Uveges et al., 2002; Wulff et al., 2002). (R)-α-MeHA was 17-fold more potent than (S)-α-MeHA, the potencies relative to histamine of the two enantiomers being of 611 and 37%, respectively (Table 4). The enantiomers of α -ChloroMeHA and α -HydroxyMeHA displayed a lower affinity but a marked stereoselectivity was again observed with these two analogues. The isomer with the same relative configuration as L-histidine, and therefore (R)- α -MeHA, in their case, the S-isomer, was preferred at hH₃Rs. The K_i values obtained for each enantiomeric pair yielded a ratio S/R of 4.3 for the isomers of α-ChloroMeHA and 7.1 for the isomers of α-Hydroxy-MeHA at hH₃Rs (Table 4).

These chiral derivatives displayed a lower potency relative to histamine (below 4%) on [3 H]histamine binding to membranes of HEK(hH₄R) cells, but a marked difference in affinity was also observed between enantiomers. Although it was about 25-fold less potent than histamine, the affinity of (R)- α -MeHA was 17-fold higher than that displayed by (S)- α -MeHA (Table 4). A marked stereoselectivity was also observed with the two enantiomers of α -ChloroMeHA and again, the isomer corresponding to L-histidine, in that case the S-isomer, was the most potent at hH₄Rs (ratio S/R of 4.4). The potencies relative to histamine of the R- and S-enantiomers of α -HydroxyMeHA were not significantly different (0.13 and 0.08%), indicating that this chiral analogue binds to H₄Rs without any clear stereoselectivity (Table 4).

The affinities of the ligands at the hH₄R were also evaluated when [³H]histamine binding to membranes of HEK(hH₄R)

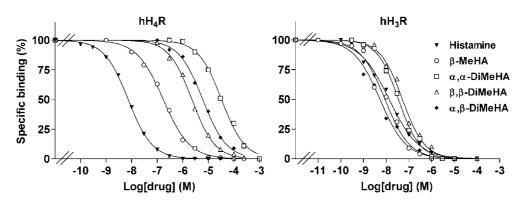


Figure 3 Effect of nonchiral α- and/or β-methylated histamine derivatives on [125 I]iodoproxyfan binding to the hH₃R and on [3 H]histamine binding to the hH₄R. Each point represents the results from two independent experiments with triplicate determinations.

Table 3 Compared potencies of nonchiral α - and/or β -methylated histamine derivatives at the human H₄ and H₃ receptors (H₄Rs and H₃Rs)

Compounds	Structure	hH_4R	hH_3R	Selectivity (ratio)
Histamine	NH ₂	$4.7 \pm 0.3 \ (100)$	11±2 (100)	H ₄ (2.3)
(\pm) -β-methylhistamine	CH ₃ CH-CH ₂ -NH ₂ N N N N N N N N N N N N N N N N N N N	109±10 (4.3)	$7.3 \pm 1.5 (151)$	H ₃ (15)
α, α -dimethylhistamine	$\begin{array}{c} \operatorname{CH_3} \\ \mid \\ \operatorname{CH_2-C} - \operatorname{NH_2} \\ \mid \\ \operatorname{CH_3} \\ \operatorname{CH_3} \end{array}$	$19,230 \pm 2300 \ (0.02)$	27±3 (40)	H ₃ (712)
(\pm) -α, β -dimethylhistamine	CH ₃ CH ₃ CH—CH—NH ₂	$3520 \pm 250 \; (0.13)$	$3.9 \pm 0.8 \; (282)$	H ₃ (903)
β , β -dimethyllhistamine	$\begin{array}{c} CH_3 \\ CH-CH_2 - NH_2 \\ CH_3 \\ H \end{array}$	1416±95 (0.33)	$40 \pm 12 \ (28)$	H ₃ (35)

Values (K_i, nM) were derived from data shown in Figure 3. The relative potencies (indicated between brackets) were calculated as the ratio: $(K_i \text{ value of histamine}/K_i \text{ value of compound}) \times 100$. The relative potencies of (\pm) - α , β -dimethylhistamine at H_1 - and H_2 -receptors were 0.07 and 0.11%, respectively (Lipp et al., 1991; 1992a).

cells was performed in the phosphate buffer. When [3H]histamine was added at a concentration (10 nm) selected to ensure a maximal specific binding at the high affinity site, without any significant binding to the low affinity site, the K_i values calculated from the obtained IC₅₀ values indicated that the affinity of the H₃R ligands (see Table 1), histamine itself and the various histamine derivatives, was very similar to that found in Tris buffer, the K_i values being about 2–6 fold higher.

Effect of histamine derivatives on forskolin-induced *cAMP* accumulation in $HEK(hH_3R)$ and $HEK(hH_4R)$ cells

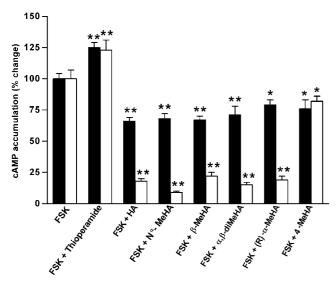
The functional properties of some of the various derivatives described above were investigated on forskolin-induced cAMP accumulation in the HEK-293 cells expressing the human H₃Rs and H₄Rs. In agreement with previous findings obtained in the same cells (Wulff et al., 2002; Takahashi et al., 2003), histamine itself used at a maximal concentration strongly inhibited cAMP formation in HEK(hH₃R) cells ($-86\pm2\%$, P < 0.001). N^{α} -MeHA, (R)- α -MeHA, β -MeHA, α,β -diMeHA (10 µM) all induced the same maximal inhibition of forskolininduced cAMP accumulation, indicating that they all behave as full agonists at the hH₃R. In agreement with its low affinity at the H_3R , a very low inhibition $(-18\pm4\%)$ was induced by 4-MeHA used at the same concentration (10 μ M) (Figure 4). Thioperamide, a standard inverse agonist, significantly increased cAMP formation in HEK(hH₃R) cells $(+23\pm8\%)$

Histamine also significantly inhibited forskolin-induced cAMP accumulation in HEK(hH₄R) cells. However, the maximal inhibition was much lower than that observed in $HEK(hH_3R)$ cells $(-34\pm3\%)$ (Figure 4). Such a low inhibition was also observed with all the substituted derivatives tested. In addition, all the derivatives appeared to behave as full agonists at the hH₄R, exhibiting a maximal inhibitory effect similar to that of histamine (around -30%) (Figure 4). In contrast, thioperamide significantly increased cAMP formation in $HEK(hH_4R)$ cells $(+25\pm4\%)$ (Figure 4).

Discussion

As frequently reported for ³H-agonist binding to various G-protein-coupled receptors, the binding characteristics of [3H]histamine to H₄Rs varied with the incubation medium,

Table 4 Compared potencies of chiral histamine derivatives at the human H₄ and H₃ receptors (H₄Rs and H₃Rs)


Compounds	Structure	hH_4R	hH_3R	Selectivity (ratio)
Histamine	N-NH ₂	$4.7 \pm 0.3 \ (100)$	11±2 (100)	H ₄ (2.3)
(R) - α -methylhistamine	N H ₃ C H	113±4 (4.1)	$1.8 \pm 0.3 $ (611)	H ₃ (63)
(S)- α -methylhistamine	N H CH ₃	1942±111 (0.24)	30±5 (37)	H ₃ (65)
(S)- α -chloromethylhistamine	N CIH ₂ C H	978±107 (0.48)	122±44 (9.0)	H ₃ (8)
(R) - α -chloromethylhistamine	N H CH ₂ CI	4088±410 (0.11)	513±187 (2.1)	H ₃ (8)
(S) - α -hydroxymethylhistamine	NH2 HOH2C	$5480 \pm 704 \; (0.08)$	172±27 (6.4)	H ₃ (32)
(R) - α -hydroxymethylhistamine	NH2 CH2OH	$3677 \pm 548 \; (0.13)$	$1219 \pm 408 \ (0.9)$	H ₃ (3)

The relative potencies (indicated between brackets) were calculated as the ratio: (K_i value of histamine/ K_i value of compound) \times 100.

being markedly altered by the presence of monovalent cations. In Tris buffer, that is, in the absence of monovalent cations, the specific binding of [3H]histamine to membranes of HEK(hH₄R) cells occurred with a nanomolar affinity to a single high affinity population of sites. When the experiments were performed with the same membranes in sodium/ potassium phosphate buffer, the apparent maximal specific binding was decreased by $\sim 50\%$, a finding probably resulting from the conversion by sodium ions of a fraction of the sites to low-affinity sites, no longer detectable in our conditions. Moreover, the remainder of the [3H]histamine-binding sites that displayed an affinity high enough to be observed in sodium/potassium phosphate buffer was heterogeneous. The population displaying the highest affinity (in the nanomolar range) was similar to that found in Tris buffer. In agreement, the K_D value of [3H]histamine and the K_i values of all competing ligands at this high affinity site were only 2-6-fold lower in phosphate buffer than in Tris buffer. In addition, in both conditions, the binding to this high affinity site was entirely abolished by GTPyS, indicating that it represents an active state of the receptor coupled to G proteins. The presence of monovalent cations in the phosphate buffer promoted the conversion of a large fraction of sites into a component

displaying an \sim 120-fold lower affinity ($K_{\rm D} = 67 \pm 24 \, {\rm nM}$). This low-affinity site remained apparently unaltered by GTP γ S and therefore presumably corresponded to an uncoupled state of the receptor.

This strong heterogeneity of [3H]histamine binding at the hH₄R revealed in phosphate buffer probably accounts for the large differences found in the various estimations of the K_D value of [3H]histamine at the high-affinity conformations (from $0.56\,\mathrm{nM}$ (the present study in sodium/potassium phosphate buffer) to 17.6 nM (Zhu et al., 2001)). The existence of these different conformations also presumably accounts for the lower K_D and K_i values of histamine in binding tests as compared to its EC50 value in some functional tests (Liu et al., 2001a; Oda et al., 2002). The modulation of ³H-agonist binding to native H₃Rs by sodium and calcium ions (Arrang et al., 1990; Kilpatrick & Michel, 1991; Clark & Hill, 1995), as well as the shallow inhibition curves observed for various agonists at recombinant H₃Rs from various species (Ligneau et al., 2000; Morisset et al., 2001; Uveges et al., 2002; Rouleau et al., 2004) indicated a similar heterogeneity among agonistbinding sites at the H₃R. However, the pattern of ³H-agonist binding to H₃ and H₄Rs is clearly different. The binding of both $[^{3}H](R)$ - α -MeHA and $[^{3}H]N^{\alpha}$ -MeHA in sodium/potas-

Figure 4 Effect of histamine derivatives on forskolin-induced cAMP accumulation in HEK(hH₃R) (white bars) and HEK(hH₄R) (black bars) cells. Cells were incubated with 1 μM forskolin (FSK) and, when required, drugs at a 10 μM final concentration. Results are expressed as the percent change of the FSK-evoked response which represented 7.5 ± 0.5 pmol (hH₃R) and 2.1 ± 0.1 pmol (hH₄R), and are the mean values from two to three (hH₃R) and four to nine (hH₄R) separate experiments with 4–10 determinations. *P<0.05; **P<0.001 vs FSK.

sium phosphate buffer apparently occurred to a single high-affinity H₃-receptor conformation and could therefore be successfully used for the pharmacological characterization of the H₃R (Arrang *et al.*, 1990; Clark & Hill, 1995).

The inhibition of [3H]histamine binding by various H₃receptor ligands was also consistent with the labelling of a single conformation of H₄Rs in Tris buffer. Moreover, in agreement with previous studies, the inhibition induced by two H₃-receptor agonists (histamine and imetit), a H₃-receptor protean agonist (proxyfan) and five H₃-receptor antagonists/ inverse agonists (thioperamide, ciproxifan, clobenpropit, FUB 349 and FUB 465) further showed that the pharmacological profiles of the human H₃Rs and H₄Rs strongly overlap (Hough, 2001). The potencies of the compounds at the hH₄R were consistent with those previously found in various cells (Liu et al., 2001a, b; Morse et al., 2001; Zhu et al., 2001; Oda et al., 2002; O'Reilly et al., 2002; Esbenshade et al., 2003) and, for most of them, were close to their potencies previously reported at the hH₃R (Lovenberg et al., 1999; 2000; West et al., 1999; Ligneau et al., 2000; Coge et al., 2001a; Ireland-Denny et al., 2001; Liu et al., 2001a; Wieland et al., 2001; O'Reilly et al., 2002; Uveges et al., 2002; Wulff et al., 2002; Esbenshade et al., 2003; Yao et al., 2003). For example, the potency of imetit at the hH₄R ($K_i = 1-6$ nM) was only five-fold lower than its mean potency at the hH_3R ($K_i = 0.2-1.6 \, nM$). The protean agonist proxyfan had a 10-fold lower potency at the hH₄R than at the hH₃R ($K_i = 34 \text{ vs } 2.7-5.0 \text{ nM}$). Among H₃-receptor antagonists/inverse agonists, the potency of clobenpropit at the hH₄R was in close agreement with that previously reported in various cells ($K_i = 5-42 \,\mathrm{nM}$) and was only 2-10-fold lower than at the hH₃R ($K_i = 0.4-5.7 \text{ nM}$). FUB 349 and FUB 465, two imidazole antagonists exhibiting a nanomolar and submicromolar affinity, respectively, at the hH₃R (this study and Ligneau et al., 2000) were also only four-fold less potent at

the hH₄R. Ciproxifan exhibited only a micromolar potency at the hH₄R (K_i of 612 nM in the present study and 1.86 μ M in (Esbenshade *et al.*, 2003)), and tended therefore to be significantly less potent than at the hH₃R (K_i =46–180 nM). In the studies mentioned above, a strong difference (up to 20-fold) was curiously found between the various determinations of the K_i value of thioperamide at hH₄Rs (27 to 519 nM), and it was also suggested that it may be less potent at hH₄Rs than at hH₃Rs (Hough, 2001). However, the potency found in the present study at H₄Rs (K_i =43±3 nM) was similar to that previously found at the hH₃R (K_i =25–200 nM). Taken together, the present results added to the preliminary pharmacology previously obtained with other imidazole compounds, confirm that the potency of many H₃R ligands is retained or only slightly reduced at the hH₄R.

The present study shows that methylsubstitution in the side chain of the histamine molecule in N^{α} , α , or β position is much less tolerated by the H₄R than by the H₃R. The corresponding methylsubstituted derivatives display a high agonist potency at H₃ autoreceptors regulating histamine release in the rat brain (Arrang *et al.*, 1991; Lipp *et al.*, 1991). In the present study, they also retained a high potency at the hH₃R but their potency at hH₄Rs stably expressed in the same cells, that is, HEK-293 cells, was dramatically decreased.

The negative influence of N^z -substitution at the H₄R became obvious when the methyl and dimethyl substituents were compared. In agreement with previous binding studies, N^z -MeHA exhibited a nanomolar affinity at the hH₃R and was about four-fold more potent than histamine, a relative potency in the same range as that found at the rat H₃R (Arrang *et al.*, 1983; 1990). Its affinity at the hH₄R was about 20-fold lower, with a relative potency to histamine of about 10% and its maximal effect on the inhibition of cAMP formation confirmed that it acts as a full agonist. N^z , N^z -diMeHA was also slightly more potent than histamine at the rat (Arrang *et al.*, 1983) and hH₃Rs, but its affinity became about 200-fold lower at the hH₄R than at the H₃R, with a relative potency to histamine less than 1%.

Substitution with methyl groups in α - and/or β -position of the side chain leads to similar observations. The corresponding compounds retained a high potency at the H₃R, but their affinity was dramatically decreased at the H₄R, although they still behaved as full agonists on cAMP formation. (\pm) - β -MeHA, which was about two-fold more potent than histamine at the rat (Arrang et al., 1991; 1992; Lipp et al., 1991; 1992b) and hH₃R, was 15-fold less potent at the hH₄R than at the hH_3R . β,β -diMeHA displayed a micromolar affinity at the hH₄R, 35-fold lower than at the hH₃R. A high selectivity ratio was found with α,α-diMeHA which exhibited a negligible affinity at the hH₄R, 700-fold lower than at the hH₃R. Interestingly, α, α -diMeHA and β, β -diMeHA exhibited similar potencies at the hH₃R, whereas α,α-diMeHA was 75-fold more potent than β,β -diMeHA at the rat H₃ autoreceptor (Arrang et al., 1991; 1992; Lipp et al., 1991; 1995). This finding may result from the distinct pharmacological profiles of the rat and hH₃Rs (Arrang et al., 1987; 1988; West et al., 1999; Ligneau et al., 2000; Lovenberg et al., 2000; Ireland-Denny et al., 2001; Wulff et al., 2002; Yao et al., 2003). Alternatively, these two compounds may discriminate distinct conformations of the receptor in the functional assay (modulation of histamine release) and the [125] liodoproxyfan-binding assay, inasmuch as agonists, including α,α -diMeHA and β,β -diMeHA, inhibit the binding with the Hill coefficients significantly lower than unity, revealing an heterogeneity among agonist-binding sites at the H₂R

Among the α and/or β -substituted compounds tested, (\pm)- α , β -diMeHA was the most potent H₃R agonist, both in the rat (Lipp *et al.*, 1991; 1992a) and human. It also displayed the highest selectivity for the H₃R, its affinity being 900-fold lower at the hH₄R. As it also displays a very low potency at H₁ and H₂ receptors (Lipp *et al.*, 1991; 1992a), (\pm)- α , β -diMeHA can, therefore, be considered as a potent and highly selective H₃-receptor agonist.

As expected (Arrang et al., 1985; 1987; 1990), the binding of the chiral α-branched ligands at the hH₃R exhibited a pronounced stereoselectivity, and in all cases the enantiomer with a configuration equivalent to L-histidine was preferred, as already observed for the rat receptor (Arrang et al., 1985; Lipp et al., 1992b). (R)-α-MeHA, which exhibited an expected nanomolar affinity, was 17-fold more potent than (S)- α -MeHA, a ratio similar to that previously found at the human receptor (West et al., 1999; Ireland-Denny et al., 2001; Wulff et al., 2002), but lower than that reported at the rat receptor (Arrang et al., 1990; Ligneau et al., 1994; Wulff et al., 2002). Compared to the *R*-isomer, the higher potency of the *S*-isomer of α-ChloroMeHA and α-HydroxyMeHA, in that case the isomer with the relative configuration corresponding to L-histidine, and therefore to (R)- α -MeHA, also revealed a marked stereoselectivity with these two chiral analogues.

In spite of much lower affinities of the derivatives, a marked stereoselectivity was also observed with the chiral α -branched ligands at the hH₄R, and the enantiomers preferred were the same as those preferred at the hH₃R. In agreement with previous reports (Liu et al., 2001a, b; Morse et al., 2001; Zhu et al., 2001; Oda et al., 2002; O'Reilly et al., 2002), (R)-α-MeHA still acted as a full agonist on cAMP formation but was about 60-fold less potent at the hH₄R than at the H₃R, confirming that the methylation of the side chain of the histamine molecule is not well tolerated by the H₄R. In agreement with previous functional studies (Shin et al., 2002), it was more potent than (S)- α -MeHA. (S)- α -ChloroMeHA was also more potent than the corresponding R-isomer. In addition, the stereoselectivity ratios between the two isomers of both chiral derivatives were similar to those found at the hH₃R. However, the marked stereoselectivity found between the isomers of α -HydroxyMeHA at the hH₃R was no longer observed at the hH₄R, indicating a different degree of stereoselectivity of both receptors for some compounds.

In addition to the effect of methylsubstitution in the side chain of the histamine molecule, the effect of methylsubstitution of the imidazole ring at human H₃Rs and H₄Rs was also studied with 2- and 4-MeHA, two compounds known to display a relative selectivity for H₁ and H₂ receptors, respectively (Black et al., 1972; Ganellin, 1982; Hill et al., 1997). As expected from our previous studies at the rat H₃ autoreceptor (Arrang et al., 1983), both compounds displayed a very low affinity at the hH₃R. Although its affinity was about 150-fold higher at the hH₄R than at the H₃R, 2-MeHA remained much less potent than histamine at the hH₄R. In contrast, 4-MeHA, which acted as a full agonist on the inhibition of cAMP formation, displayed a potency similar to that of histamine at the hH₄R, with an affinity in the nanomolar range, 2700-fold higher than at the hH₃R. 4-MeHA is very poorly active at H₁ receptors but it has also

long been considered as a relatively selective H₂-receptor agonist. Its potency has been reported to be about 50% that of histamine at H₂ receptors in various systems and species (Black et al., 1972; Ganellin, 1982; Hill et al., 1997). Therefore, its potency relative to histamine that we report here at H₄Rs (67%) is much higher than at H₁Rs and H₃Rs but is in the same range as that found at H₂ receptors, which may indicate a rather limited selectivity. However, the binding affinity of histamine at H₄Rs being several orders of magnitude higher than at either the H₁- or H₂ receptors (Hill et al., 1977; Arrang et al., 1990; Ruat et al., 1990), 4-MeHA is likely to activate H₄Rs at concentrations much lower than those required to activate the three other subclasses of histamine receptors. Therefore, although 4-MeHA acts as an agonist and the potency of agonists is well known to be dependent on the test system used, it can be considered as selective for H₄Rs. While this work was in progress, Lim et al. (2005) have also identified 4-MeHA as a potent agonist at hH₄Rs expressed in SK-N-MC cells, although its affinity was found to be lower ($K_i = 50 \,\mathrm{nM}$).

Like the recombinant H₃R (Lovenberg *et al.*, 1999; Morisset *et al.*, 2000; Drutel *et al.*, 2001), the recombinant H₄R has been reported to be coupled to G_{i/o} proteins and inhibition of cAMP formation. However, in spite of a high expression level, our data show that the maximal inhibition achieved by various full agonists in HEK(hH₄R) cells was much lower than that obtained in HEK(hH₃R) cells, making quantification of the modulation of cAMP levels problematic. In agreement, in other studies, direct coupling of the H₄R to inhibition of adenylate cyclase could not be detected (Morse *et al.*, 2001) or was also found to be weak (Nakamura *et al.*, 2000; Oda *et al.*, 2000; Liu *et al.*, 2001a, b). This might suggest that inhibition of adenylate cyclase is not a primary transduction pathway of the H₄R or that it involves a low coupling efficacy of the receptor to the G proteins.

Recently, we showed that the recombinant rat and hH₃Rs expressed at moderate densities display constitutive activity (Morisset et al., 2000; Rouleau et al., 2002). This constitutive activity was clearly evidenced by the enhancement of cAMP accumulation induced in HEK(hH₃R) cells by thioperamide acting as an inverse agonist. Interestingly, in agreement with a previous study based upon [35S]GTPγ[S] binding and MAP kinase activity (Morse et al., 2001), constitutive activity of the H₄R could also be easily detected by the enhancement of cAMP formation induced by thioperamide in HEK(hH₄R) cells. Consistent with the physiological relevance of the phenomenon, we demonstrated constitutive activity of the native rat and mouse H3Rs and showed that it controls histaminergic neuron activity in rodent brain in vivo (Morisset et al., 2000; Rouleau et al., 2002). Whether native H₄Rs also display constitutive activity remains to be established. However, it is worth noting that, whereas the maximal effect of the agonists at the H₄R was much lower than at the H₃R, the intrinsic efficacy of thioperamide acting as an inverse agonist was similar at H₃Rs and H₄Rs, indicating a relatively high coupling efficacy of constitutively active conformations of the H₄R compared to that of ligand-selective active conformations (Gbahou et al., 2003).

In conclusion, the present data confirm that the affinity of many H_3R ligands, including standard agonists and antagonists, is retained or only slightly reduced at the hH_4R . However, the structure–activity relationships of histamine derivatives at human H_3Rs and H_4Rs strongly differ and lead

to the identification of selective compounds. Derivatives methylsubstituted in N^{α} , α - or β -position of the side chain retain a high affinity at the H₃R but their affinity at the H₄R is strongly decreased. Among them, (\pm) - α , β -diMeHA is a potent and selective H₃-receptor agonist, with a 900-fold lower affinity at H₄Rs and a very low potency at H₁ and H₂

receptors. In contrast, 4-MeHA displays a much higher affinity at hH_4Rs than at H_3Rs and can be considered as a potent and selective H_4 -receptor agonist.

We thank Pr W. Schunack and Pr C.R. Ganellin for providing many of the drugs used in the present study.

References

- ARRANG, J.M., DEVAUX, B., CHODKIEWICZ, J.P. & SCHWARTZ, J.C. (1988). H₃-receptors control histamine release in human brain. *J. Neurochem.*, **51**, 105–108.
- ARRANG, J.M., GARBARG, M., LANCELOT, J.C., LECOMTE, J.M., POLLARD, H., ROBBA, M., SCHUNACK, W. & SCHWARTZ, J.C. (1987). Highly potent and selective ligands for histamine H₃-receptors. *Nature*, 327, 117–123.
- ARRANG, J.M., GARBARG, M. & SCHWARTZ, J.C. (1983). Auto-inhibition of brain histamine release mediated by a novel class (H₃) of histamine receptor. *Nature*, **302**, 832–837.
- ARRANG, J.M., GARBARG, M. & SCHWARTZ, J.C. (1992). H₃-Receptor and control of histamine release. In: *The Histamine Receptor*. ed. Schwartz, J.C. & Haas, H.L. pp. 145–159. New York: Wiley-Liss.
- ARRANG, J.M., GARBARG, M., SCHWARTZ, J.C., LIPP, R., STARK, H., SCHUNACK, W. & LECOMTE, J.M. (1991). The histamine H₃-receptor: pharmacology, roles and clinical implications studied with agonists. *Agents Actions Suppl.*, **33**, 55–67.
- ARRANG, J.M., ROY, J., MORGAT, J.L., SCHUNACK, W. & SCHWARTZ, J.C. (1990). Histamine H₃ receptor binding sites in rat brain membranes: modulations by guanine nucleotides and divalent cations. *Eur. J. Pharmacol.*, **188**, 219–227.
- ARRANG, J.M., SCHWARTZ, J.C. & SCHUNACK, W. (1985). Stereoselectivity of the histamine H₃-presynaptic autoreceptor. *Eur. J. Pharmacol.*, **117**, 109–114.
- BELL, J.K., MCQUEEN, D.S. & REES, J.L. (2004). Involvement of histamine H₄ and H₁ receptors in scratching induced by histamine receptor agonists in BalbC mice. *Br. J. Pharmacol.*, **142**, 374–380.
- BLACK, J.W., DUNCAN, W.A., DURANT, C.J., GANELLIN, C.R. & PARSONS, E.M. (1972). Definition and antagonism of histamine H₂-receptors. *Nature*, **236**, 385–390.
- BUCKLAND, K.F., WILLIAMS, T.J. & CONROY, D.M. (2003). Histamine induces cytoskeletal changes in human eosinophils *via* the H₄ receptor. *Br. J. Pharmacol.*, **140**, 1117–1127.
- CHENG, Y. & PRUSSOFF, W.H. (1973). Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50 per cent inhibition (150) of an enzymatic reaction. *Biochem. Pharmacol.*, **22**, 3099–3108.
- CLARK, E.A. & HILL, S.J. (1995). Differential effect of sodium ions and guanine nucleotides on the binding of thioperamide and cloben-propit to histamine H₃-receptors in rat cerebral cortical membranes. *Br. J. Pharmacol.*, **114**, 357–362.
- COGE, F., GUENIN, S.P., AUDINOT, V., RENOUARD-TRY, A., BEAUVERGER, P., MACIA, C., OUVRY, C., NAGEL, N., RIQUE, H., BOUTIN, J.A. & GALIZZI, J.P. (2001a). Genomic organization and characterization of splice variants of the human histamine H₃ receptor. *Biochem. J.*, **355**, 279–288.
- COGE, F., GUENIN, S.P., RIQUE, H., BOUTIN, J.A. & GALIZZI, J.P. (2001b). Structure and expression of the human histamine H₄-receptor gene. *Biochem. Biophys. Res. Commun.*, **284**, 301–309.
- DE ESCH, I.J., THURMOND, R.L., JONGEJAN, A. & LEURS, R. (2005). The histamine H₄ receptor as a new therapeutic target for inflammation. *Trends Pharmacol. Sci.*, **26**, 462–469.
- DRUTEL, G., PEITSARO, N., KARLSTEDT, K., WIELAND, K., SMIT, M.J., TIMMERMAN, H., PANULA, P. & LEURS, R. (2001). Identification of rat H₃ receptor isoforms with different brain expression and signaling properties. *Mol. Pharmacol.*, **59**, 1–8.
- ESBENSHADE, T.A., KRUEGER, K.M., MILLER, T.R., KANG, C.H., DENNY, L.I., WITTE, D.G., YAO, B.B., FOX, G.B., FAGHIH, R., BENNANI, Y.L., WILLIAMS, M. & HANCOCK, A.A. (2003). Two novel and selective nonimidazole histamine H₃ receptor antagonists A-304121 and A-317920: I. *In vitro* pharmacological effects. *J. Pharmacol. Exp. Ther.*, **305**, 887–896.

- GANELLIN, C.R. (1982). Chemistry and structure-activity relationships of drugs acting at histamine receptors. In: *Pharmacology of Histamine Receptors*. ed. Ganellin, C.R. & Parsons, M.E. pp. 10–102. Bristol, U.K.: Wright PSG.
- GANTNER, F., SAKAI, K., TUSCHE, M.W., CRUIKSHANK, W.W., CENTER, D.M. & BACON, K. (2002). Histamine H₄ and H₂ receptors control histamine-induced interleukin-16 release from human CD8(+) T cells. J. Pharmacol. Exp. Ther., 303, 300–307.
- GBAHOU, F., ROULEAU, A., MORISSET, S., PARMENTIER, R., CROCHET, S., LIN, J.S., LIGNEAU, X., TARDIVEL-LACOMBE, J., STARK, H., SCHUNACK, W., GANELLIN, C.R., SCHWARTZ, J.C. & ARRANG, J.M. (2003). Protean agonism at histamine H₃ receptors in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A., 100, 11086–11091.
- HASHIMOTO, T., HARUSAWA, S., ARAKI, L., ZUIDERVELD, O.P., SMIT, M.J., IMAZU, T., TAKASHIMA, S., YAMAMOTO, Y., SAKAMOTO, Y., KURIHARA, T., LEURS, R., BAKKER, R.A. & YAMATODANI, A. (2003). A selective human H₄-receptor agonist:(–)-2-cyano-1-methyl-3-[(2*R*,5*R*)-5-[1*H*-imidazol-4(5)yl]tetra-hydrofuran-2-y] methylguanidine. *J. Med. Chem.*, **46**, 3162–3165.
- HILL, S.J., GANELLIN, C.R., TIMMERMAN, H., SCHWARTZ, J.C., SHANKLEY, N.P., YOUNG, J.M., SCHUNACK, W., LEVI, R. & HAAS, H.L. (1997). International Union of Pharmacology. XIII. Classification of histamine receptors. *Pharmacol. Rev.*, 49, 253–278.
- HILL, S.J., YOUNG, J.M. & MARRIAN, D.H. (1977). Specific binding of 3H-mepyramine to histamine H₁ receptors in intestinal smooth muscle. *Nature*, 270, 361–363.
- HOFSTRA, C.L., DESAI, P.J., THURMOND, R.L. & FUNG-LEUNG, W.P. (2003). Histamine H₄ receptor mediates chemotaxis and calcium mobilization of mast cells. J. Pharmacol. Exp. Ther., 305, 1212–1221.
- HOUGH, L.B. (2001). Genomics meets histamine receptors: new subtypes, new receptors. Mol. Pharmacol., 59, 415–419.
- IRELAND-DENNY, L., PARIHAR, A.S., MILLER, T.R., KANG, C.H., KRUEGER, K.M., ESBENSHADE, T.A. & HANCOCK, A.A. (2001). Species-related pharmacological heterogeneity of histamine H₃ receptors. Eur. J. Pharmacol., 433, 141–150.
- KILPATRICK, G.J. & MICHEL, A.D. (1991). Characterisation of the binding of the histamine H₃ receptor agonist [³H](*R*)-alpha methyl histamine to homogenates of rat and guinea-pig cortex. *Agents Actions Suppl.*, **33**, 69–75.
- KRAUSE, M., STARK, H. & SCHUNACK, W. (1997). Iododestannylation: an improved synthesis of [125] Ijodoproxyfan, a specific radioligand of the histamine H₃ receptor. *J. Label. Comp. Radiopharm.*, 39, 601–606.
- LIGNEAU, X., GARBARG, M., VIZUETE, M.L., DIAZ, J., PURAND, K., STARK, H., SCHUNACK, W. & SCHWARTZ, J.C. (1994). [125] [100] [125] [100] [125] [100] [1
- LIGNEAU, X., MORISSET, S., TARDIVEL-LACOMBE, J., GBAHOU, F., GANELLIN, C.R., STARK, H., SCHUNACK, W., SCHWARTZ, J.C. & ARRANG, J.M. (2000). Distinct pharmacology of rat and human histamine H₃ receptors: role of two amino acids in the third transmembrane domain. *Br. J. Pharmacol.*, **131**, 1247–1250.
- LIM, H.D., VAN RIJN, R.M., LING, P., BAKKER, R.A., THURMOND, R.L. & LEURS, R. (2005). Evaluation of histamine H₁-, H₂-, and H₃-receptor ligands at the human histamine H₄ receptor: identification of 4-methylhistamine as the first potent and selective H₄ receptor agonist. *J. Pharmacol. Exp. Ther.*, **314**, 1310–1321.
- LING, P., NGO, K., NGUYEN, S., THURMOND, R.L., EDWARDS, J.P., KARLSSON, L. & FUNG-LEUNG, W.P. (2004). Histamine H₄ receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation. *Br. J. Pharmacol.*, **142**, 161–171.

- LIPP, R., ARRANG, J.M., BUSCHMANN, J., GARBARG, M., LUGER, P., SCHUNACK, W. & SCHWARTZ, J.C. (1991). Novel chiral H₃-receptor agonists. *Agents Actions Suppl.*, **33**, 277–282.
- LIPP, R., ARRANG, J.M., GARBARG, M., LUGER, P., SCHWARTZ, J.C. & SCHUNACK, W. (1992a). Synthesis, absolute configuration, stereoselectivity, and receptor selectivity of (alpha R, beta S)-alpha,beta-dimethylhistamine, a novel high potent histamine H₃ receptor agonist. J. Med. Chem., 35, 4434–4441.
- LIPP, R., STARK, H., ARRANG, J., GARBARG, M., SCHWARTZ, J. & SCHUNACK, W. (1995). Synthesis and histamine H₃-receptor agonist activity of mono- and dialkyl-substituted histamine derivatives. Eur. J. Med. Chem., 30, 219–225.
- LIPP, R., STARK, H. & SCHUNACK, W. (1992b). Pharmacochemistry of H₃ receptors. In: *The Histamine Receptor*. ed. Schwartz, J.C. & Haas, H.L. pp. 57–72. New York: Wiley-Liss.
- LIU, C., MA, X., JIANG, X., WILSON, S.J., HOFSTRA, C.L., BLEVITT, J., PYATI, J., LI, X., CHAI, W., CARRUTHERS, N. & LOVENBERG, T.W. (2001a). Cloning and pharmacological characterization of a fourth histamine receptor (H₄) expressed in bone marrow. *Mol. Pharmacol.*, **59**, 420–426.
- LIU, C., WILSON, S.J., KUEI, C. & LOVENBERG, T.W. (2001b). Comparison of human, mouse, rat, and guinea pig histamine H₄ receptors reveals substantial pharmacological species variation. J. Pharmacol. Exp. Ther., 299, 121–130.
- LOVENBERG, T.W., PYATI, J., CHANG, H., WILSON, S.J. & ERLANDER, M.G. (2000). Cloning of rat histamine H₃ receptor reveals distinct species pharmacological profiles. *J. Pharmacol. Exp. Ther.*, 293, 771–778.
- LOVENBERG, T.W., ROLAND, B.L., WILSON, S.J., JIANG, X., PYATI, J., HUVAR, A., JACKSON, M.R. & ERLANDER, M.G. (1999). Cloning and functional expression of the human histamine H₃ receptor. *Mol. Pharmacol.*, **55**, 1101–1107.
- MORISSET, S., ROULEAU, A., LIGNEAU, X., GBAHOU, F., TARDIVELLACOMBE, J., STARK, H., SCHUNACK, W., GANELLIN, C.R., SCHWARTZ, J.C. & ARRANG, J.M. (2000). High constitutive activity of native H₃ receptors regulates histamine neurons in brain. *Nature*, **408**, 860–864.
- MORISSET, S., SASSE, A., GBAHOU, F., HERON, A., LIGNEAU, X., TARDIVEL-LACOMBE, J., SCHWARTZ, J.C. & ARRANG, J.M. (2001). The rat H₃ receptor: gene organization and multiple isoforms. *Biochem. Biophys. Res. Commun.*, **280**, 75–80.
- MORSE, K.L., BEHAN, J., LAZ, T.M., WEST JR., R.E., GREENFEDER, S.A., ANTHES, J.C., UMLAND, S., WAN, Y., HIPKIN, R.W., GONSIOREK, W., SHIN, N., GUSTAFSON, E.L., QIAO, X., WANG, S., HEDRICK, J.A., GREENE, J., BAYNE, M. & MONSMA JR., F.J. (2001). Cloning and characterization of a novel human histamine receptor. *J. Pharmacol. Exp. Ther.*, **296**, 1058–1066.
- NAKAMURA, T., ITADANI, H., HIDAKA, Y., OHTA, M. & TANAKA, K. (2000). Molecular cloning and characterization of a new human histamine receptor, HH4R. *Biochem. Biophys. Res. Commun.*, **279**, 615–620.
- NGUYEN, T., SHAPIRO, D.A., GEORGE, S.R., SETOLA, V., LEE, D.K., CHENG, R., RAUSER, L., LEE, S.P., LYNCH, K.R., ROTH, B.L. & O'DOWD, B.F. (2001). Discovery of a novel member of the histamine receptor family. *Mol. Pharmacol.*, **59**, 427–433.
- ODA, T., MATSUMOTO, S., MASUHO, Y., TAKASAKI, J., MATSUMOTO, M., KAMOHARA, M., SAITO, T., OHISHI, T., SOGA, T., HIYAMA, H., MATSUSHIME, H. & FURUICHI, K. (2002). cDNA cloning and characterization of porcine histamine H₄ receptor. *Biochim. Biophys. Acta*, 1575, 135–138.
- ODA, T., MORIKAWA, N., SAITO, Y., MASUHO, Y. & MATSUMOTO, S. (2000). Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. *J. Biol. Chem.*, 275, 36781–36786.
- O'REILLY, M., ALPERT, R., JENKINSON, S., GLADUE, R.P., FOO, S., TRIM, S., PETER, B., TREVETHICK, M. & FIDOCK, M. (2002). Identification of a histamine H₄ receptor on human eosinophils role in eosinophil chemotaxis. *J. Recept Signal Transduct. Res.*, 22, 431–448.
- PARKER, R.B. & WAUD, D.R. (1971). Pharmacological estimation of drug-receptor dissociation constants. Statistical evaluation. I. Agonists. J. Pharmacol. Exp. Ther., 177, 1–12.

- PILLOT, C., HERON, A., COCHOIS, V., TARDIVEL-LACOMBE, J., LIGNEAU, X., SCHWARTZ, J.C. & ARRANG, J.M. (2002). A detailed mapping of the histamine H₃ receptor and its gene transcripts in rat brain. *Neuroscience*, **114**, 173–193.
- ROULEAU, A., HERON, A., COCHOIS, V., PILLOT, C., SCHWARTZ, J.C. & ARRANG, J.M. (2004). Cloning and expression of the mouse histamine H₃ receptor: evidence for multiple isoforms. *J. Neuro-chem.*, **90**, 1331–1338.
- ROULEAU, A., LIGNEAU, X., TARDIVEL-LACOMBE, J., MORISSET, S., GBAHOU, F., SCHWARTZ, J.C. & ARRANG, J.M. (2002). Histamine H₃-receptor-mediated [³⁵S]GTPγ[S] binding: evidence for constitutive activity of the recombinant and native rat and human H₃ receptors. *Br. J. Pharmacol.*, **135**, 383–392.
- RUAT, M., TRAIFFORT, E., BOUTHENET, M.L., SCHWARTZ, J.C., HIRSCHFELD, J., BUSCHAUER, A. & SCHUNACK, W. (1990). Reversible and irreversible labeling and autoradiographic localization of the cerebral histamine H₂ receptor using [125]iodinated probes. *Proc. Natl. Acad. Sci. U.S.A.*, 87, 1658–1662.
- SHIN, N., COATES, E., MURGOLO, N.J., MORSE, K.L., BAYNE, M., STRADER, C.D. & MONSMA JR, F.J. (2002). Molecular modeling and site-specific mutagenesis of the histamine-binding site of the histamine H₄ receptor. *Mol. Pharmacol.*, 62, 38–47.
- TAKAHASHI, K., TOKITA, S. & KOTANI, H. (2003). Generation and characterization of highly constitutive active histamine H₃ receptors. *J. Pharmacol. Exp. Ther.*, **307**, 213–218.
- TAKESHITA, K., SAKAI, K., BACON, K.B. & GANTNER, F. (2003). Critical role of histamine H₄ receptor in leukotriene B4 production and mast cell-dependent neutrophil recruitment induced by zymosan *in vivo*. *J. Pharmacol. Exp. Ther.*, **307**, 1072–1078.
- TARDIVEL-LACOMBE, J., MORISSET, S., GBAHOU, F., SCHWARTZ, J.C. & ARRANG, J.M. (2001). Chromosomal mapping and organization of the human histamine H₃ receptor gene. *Neuro-Report*. 12, 321–324.
- THURMOND, R.L., DESAI, P.J., DUNFORD, P.J., FUNG-LEUNG, W.P., HOFSTRA, C.L., JIANG, W., NGUYEN, S., RILEY, J.P., SUN, S., WILLIAMS, K.N., EDWARDS, J.P. & KARLSSON, L. (2004). A potent and selective histamine H₄ receptor antagonist with anti-inflammatory properties. J. Pharmacol. Exp. Ther., 309, 404–413.
- UVEGES, A.J., KOWAL, D., ZHANG, Y., SPANGLER, T.B., DUNLOP, J., SEMUS, S. & JONES, P.G. (2002). The role of transmembrane helix 5 in agonist binding to the human H₃ receptor. *J. Pharmacol. Exp. Ther.*, **301**, 451–458.
- WEST JR., R.E., WU, R.L., BILLAH, M.M., EGAN, R.W. & ANTHES, J.C. (1999). The profiles of human and primate [³H]N²-methylhistamine binding differ from that of rodents. *Eur. J. Pharmacol.*, 377, 233–239.
- WIELAND, K., BONGERS, G., YAMAMOTO, Y., HASHIMOTO, T., YAMATODANI, A., MENGE, W.M., TIMMERMAN, H., LOVENBERG, T.W. & LEURS, R. (2001). Constitutive activity of histamine H₃ receptors stably expressed in SK-N-MC cells: display of agonism and inverse agonism by H₃ antagonists. *J. Pharmacol. Exp. Ther.*, 299, 908–914.
- WULFF, B., HASTRUP, S & RIMVALL, K. (2002). Characteristics of recombinantly expressed rat and human histamine H₃ receptors. *Eur. J. Pharmacol.*, 453, 33–41.
- YAO, B., HUTCHINS, C.W., CARR, T.L., CASSAR, S., MASTERS, J.N., BENNANI, Y.L., ESBENSHADE, T.A. & HANCOCK, A.A. (2003). Molecular modeling and pharmacological analysis of species-related histamine H₃ receptor heterogeneity. *Neuropharmacology*, 44, 773–786.
- ZHU, Y., MICHALOVICH, D., WU, H., TAN, K.B., DYTKO, G.M., MANNAN, I.J., BOYCE, R., ALSTON, J., TIERNEY, L.A., LI, X., HERRITY, N.C., VAWTER, L., SARAU, H.M., AMES, R.S., DAVENPORT, C.M., HIEBLE, J.P., WILSON, S., BERGSMA, D.J. & FITZGERALD, L.R. (2001). Cloning, expression, and pharmacological characterization of a novel human histamine receptor. *Mol. Pharmacol.*, **59**, 434–441.

(Received October 4, 2005 Revised November 24, 2005 Accepted December 16, 2005 Published online 23 January 2006)